13 research outputs found

    Core Challenges in Embodied Vision-Language Planning

    Full text link
    Recent advances in the areas of multimodal machine learning and artificial intelligence (AI) have led to the development of challenging tasks at the intersection of Computer Vision, Natural Language Processing, and Embodied AI. Whereas many approaches and previous survey pursuits have characterised one or two of these dimensions, there has not been a holistic analysis at the center of all three. Moreover, even when combinations of these topics are considered, more focus is placed on describing, e.g., current architectural methods, as opposed to also illustrating high-level challenges and opportunities for the field. In this survey paper, we discuss Embodied Vision-Language Planning (EVLP) tasks, a family of prominent embodied navigation and manipulation problems that jointly use computer vision and natural language. We propose a taxonomy to unify these tasks and provide an in-depth analysis and comparison of the new and current algorithmic approaches, metrics, simulated environments, as well as the datasets used for EVLP tasks. Finally, we present the core challenges that we believe new EVLP works should seek to address, and we advocate for task construction that enables model generalizability and furthers real-world deployment.Comment: 35 page

    The effectiveness of scoliosis screening programs: methods for systematic review and expert panel recommendations formulation

    Get PDF
    Background: Literature on scoliosis screening is vast, however because of the observational nature of available data and methodological flaws, data interpretation is often complex, leading to incomplete and sometimes, somewhat misleading conclusions. The need to propose a set of methods for critical appraisal of the literature about scoliosis screening, a comprehensive summary and rating of the available evidence appeared essential. METHODS: To address these gaps, the study aims were: i) To propose a framework for the assessment of published studies on scoliosis screening effectiveness; ii) To suggest specific questions to be answered on screening effectiveness instead of trying to reach a global position for or against the programs; iii) To contextualize the knowledge through expert panel consultation and meaningful recommendations. The general methodological approach proceeds through the following steps: Elaboration of the conceptual framework; Formulation of the review questions; Identification of the criteria for the review; Selection of the studies; Critical assessment of the studies; Results synthesis; Formulation and grading of recommendations in response to the questions. This plan follows at best GRADE Group (Grades of Recommendation, Assessment, Development and Evaluation) requirements for systematic reviews, assessing quality of evidence and grading the strength of recommendations. CONCLUSIONS: In this article, the methods developed in support of this work are presented since they may be of some interest for similar reviews in scoliosis and orthopaedic fields.Canadian Institutes of Health Research (CIHR) by three means: CIHR Research Operating Grants (2004–2007, 2008–2011); Canada Graduate Scholarships Doctoral Awards (MB) and CIHR MENTOR and AnEIS Strategic training programs doctoral awards (MB)

    Spinal Cord Injury in the Pediatric Population: A Systematic Review of the Literature

    No full text
    Spinal Cord Injury (SCI) in the pediatric population is relatively rare but carries significant psychological and physiological consequences. An interdisciplinary group of experts composed of medical and surgical specialists treating patients with SCI formulated the following questions: 1) What is the epidemiology of pediatric spinal cord injury and fractures?; 2) Are there unique features of pediatric SCI which distinguish the pediatric SCI population from adult SCI?; 3) Is there evidence to support the use of neuroprotective approaches, including hypothermia and steroids, in the treatment of pediatric SCI

    Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma.

    No full text
    Extraskeletal myxoid chondrosarcoma (EMC) is a soft-tissue neoplasm cytogenetically characterized by the translocations t(9;22)(q22;q11-12) or t(9;17)(q22;q11), generating EWS/CHN or RBP56/CHN fusion genes, respectively. In the present study, 18 EMCs were studied both cytogenetically and at the molecular level. Chromosomal aberrations were detected in 16 samples: 13 with involvement of 9q22 and 22q11-12, and three with rearrangements of 9q22 and 17q11. Fifteen cases had an EWS/CHN fusion transcript and three had an RBP56/CHN transcript. The most frequent EWS/CHN transcript (type 1; 10 tumors), involved fusion of EWS exon 12 with CHN exon 3, and the second most common (type 5; two cases) was fusion of EWS exon 13 with CHN exon 3. In all tumors with RBP56/CHN fusion, exon 6 of RBP56 was fused to exon 3 of CHN. By genomic XL PCR and sequence analyses, the breakpoints from 14 cases were mapped in the EWS, RBP56, and CHN genes. In CHN, 12 breakpoints were found in intron 2 and only two in intron 1. In EWS, the breaks occurred in introns 7 (one break), 12 (eight breaks), and 13 (one break), and in RBP56 in intron 6. Repetitive elements such as Alu and LINE sequences seem to have limited, if any, importance in the genesis of EWS/CHN and RBP56/CHN chimeras. Furthermore, there were no chi, chi-like, topoisomerase II, or translin consensus sequences in the introns harboring the translocation breakpoints, nor could the number of topo I sites in EWS, RBP56, and CHN introns explain the uneven distribution of the breakpoints among EWS or CHN introns. Additional genetic events, such as nucleotide insertions, homologies at the junction, deletions, duplications, and inversions, were found to accompany the translocations, indicating that the chromosomal translocations do not require sequence-specific recombinases or extensive homology between the recombined sequences. Copyright 2002 Wiley-Liss, Inc
    corecore